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Gauge equivalence of representations of symmetry groups in 
quantum mechanics 

Henk Hooglandt 
Institute of Theoretical Physics, University of Nijmeger., Holland 

Received 24 January 1978 

Abstract. The equivalence of representations of symmetry groups operating upon wave- 
functions in configuration space is studied with regard to the (intuitive) notion of physical 
equivalence. A refinement of the usual projective equivalence relation is introduced, 
called gauge equivalence, for which the allowed unitary equivalence transformations are 
gauge transformations. For a Euclidean as well as for a Newton-Hooke symmetry group 
the gauge equivalence classes of unitary multiplier representations are determined. These 
examples support the assertion that equivalence from a physical viewpoint corresponds 
better to this new gauge equivalence concept than to the usual notion of projective 
equivalence. 

1. Introduction 

Representations of symmetry groups play an important role in quantum mechanics, 
especially the unitary multiplier representations. Such a representation U obeys a 
relation of the form 

where P ( g ‘ ,  g )  is a phase factor (convention: U ( e ) =  1). Usually one considers two 
such unitary multiplier representations U and U‘ of a group G as equivalent if they 
are connected by the projective equivalence relation 

U ‘ k )  = J4g)TUk)T-l (2) 
where v ( g )  is a phase factor and T a unitary transformation. 

The freedom of an arbitrary phase factor v ( g )  in the projective equivalence 
relation originates from the interpretation of rays rather than vectors as physical 
states, which is a well founded principle in quantum mechanics. On the other hand, 
the freedom of an arbitrary unitary equivalence transformation T has a physically 
much weaker foundation. Such a transformation conserves the structure of an abstract 
Hilbert space, i.e. the structure common to all Hilbert spaces, especially the inner 
product. However, the concrete Hilbert spaces in quantum mechanics have more 
structure than just that. For systems described by wavefunctions in space(-time) not 
only the inner product, integrated over the whole space, but also the local ‘inner 
product density’ has a physical meaning, related to probability density. In general, the 
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information about these local quantities will be destroyed by a global unitary 
equivalence transformation. Hence, as Bargman and Wigner (1948) have already 
noticed, ‘it cannot be claimed that equivalence in the sense of (2) implies equivalence 
in every physical aspect’. This becomes obvious when one realises with Dirac (1962) 
that the equivalence relation (2) ‘involves looking upon all unitary transformations as 
trivial’, A physicist will consider a transformation as trivial only if it conserves all 
physical properties in which he is interested, and this strongly depends on the physical 
context in which he applies that transformation. In this paper the physical context will 
be that of ‘elementary’ quantum mechanics described by wavefunctions in configura- 
tion space. Therefore it is natural here to consider a unitary transformation as trivial if 
it is a gauge transformation leaving not only the global but also the local properties 
invariant. 

For that reason we will define in this paper another equivalence concept for 
unitary multiplier representations in configuration space, called gauge equivalence. 
This will be a refinement of projective equivalence by the restriction that the unitary 
transformations T allowed in equation (2) have to be gauge transformations. The 
point is that ‘equivalence in every physical aspect’ corresponds better to this new 
gauge equivalence concept than to the usual notion of projective equivalence. We will 
come back to this assertion in the conclusion. 

In a previous paper (Hoogland 1976) we have already started an investigation of 
the discrepancy between projective and ‘physical’ equivalence, especially with regard 
to the notion of superequivalence of group exponents (LCvy-Leblond 1969). That 
discrepancy, however, will also be present in cases of symmetry groups for which 
superequivalence does not play a role. In our present approach we can deal with the 
problem, irrespective as to whether superequivalence of exponents is a relevant 
notion for the group at issue. (In fact, gauge equivalence will be a refinement not only 
of projective equivalence but also of the so-called ‘local equivalence’ introduced on p 
435 of Hoogland (1976)) 

This paper will be organised as follows. In § 2 the gauge equivalence relation for 
unitary multiplier representations in configuration space is introduced. In § 3 some 
technical details are given, necessary for the formulation of a result about a complete 
set of inequivalent gauge functions. In the §§ 4 and 5 two examples are given: for a 
Euclidean and for a Newton-Hooke symmetry group the projective (§§ 4.1 and 5.1)  as 
well as the gauge (§§ 4.2 and 5.2) equivalence classes of unitary multiplier represen- 
tations are determined and a physical interpretation (904.3 and 5.3)  is given. A 
conclusion is given in the last section. 

2. The main concept 

Let a group G and a set X be given, with a transitive operation of G upon X. We will 
consider the unitary multiplier representations V ( g )  operating in Hilbert space X 
spanned by complex functions $ ( x )  such that 

I(U(g)4)(gx)12 = l4wIZ (3) 

or, in other words, such that 1 + ( ~ ) 1 ~  transforms as a scalar function. Throughout this 
section we will assume these concrete properties added to the abstract structure of the 
group G, the Hilbert space 2 and the representation U. 
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The set X may be thought of as a certain space(-time) and the functions $ ( x )  as 
wavefunctions, so that I$(x)I’ may be interpreted as a probability density. However, in 
this section we will not use any topological property of G and X and, accordingly, we 
will not specify an explicit form for the inner product and the equation of motion of 
the wavefunctions. 

The concrete Hilbert space structure introduced above will be sufficient in order to  
use the notion of gauge transformation between two Hilbert spaces, by which we 
mean a unitary transformation T :  %+ % with the property 

I(T4ux>12 = IW’. (4) 
By means of these gauge transformations we can define the main concept of this 
paper: 

Definition 1 .  Two unitary multiplier representations U and U’ of G in X’ and X are 
called gauge equivalent iff there exist a phase function v ( g )  and a gauge trans- 
formation T :  %+ % such that equation ( 2 )  holds. 

This definition obviously gives a refinement of the usual projective equivalence 
relation. The physical idea behind this new equivalence concept has been given in the 
introduction. 

Equation (3) implies the existence of a phase function A(g, x)  such that the unitary 
U ( g )  operates as 

( U ( g ) g l r ) ( g x ) = A ( g ,  x)rL(x).  ( 5 )  

The function A ( g ,  x )  is called a gauge function. From (1) it follows that such a gauge 
function has the property 

A(g’7 g x ) A ( g ,  x > =  cL(g’, g ) A ( g ‘ g ,  X I  ( 6 )  

with the convention A ( e ,  x ) =  1. Equation (4) implies the existence of a phase 
function S ( x )  such that the unitary T operates as 

( W ) ( x ) =  S(X)$(X) .  (7 1 
The concept of gauge equivalence of representations ‘induces’ an equivalence rela- 
tion for the gauge functions: 

Definition 2. Two gauge functions A and A’ are called equivalent iff there exist phase 
functions v ( g )  and S ( x )  such that 

A ’ ( g ,  X I =  v ( g ) S ( g x ) A k ,  X ) l S ( X ) .  (8 1 
It is obvious that two gauge equivalent representations U and U’ have equivalent 
gauge functions A and A‘.  The inverse is not true: two representations having 
equivalent gauge functions are not necessarily gauge equivalent, not even when they 
are projectively equivalent. The reason is that the function S(x) obeying equation (8) 
does not necessarily define a unitary transformation between the two Hilbert spaces 
that carry the representations. 

Theorem 1 .  Two unitary multiplier representations in % and X are gauge equivalent 
iff their gauge functions are equivalent a n d  equation (8) can be satisfied by a phase 
function S ( x )  defining a unitary transformation T : %+ 2‘ by equation (7). 

The proof of this statement is easy enough to  leave it as an exercise for the reader. 
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A generalisation of the foregoing concepts to unitary/anti-unitary multiplier 
representations operating on wavefunctions with several components can be found in 
part I of Hoogland (1977). 

3. Technical considerations 

From theorem 1 it follows that a complete set of inequivalent gauge functions is a 
necessary (but not sufficient) ingredient for the determination of the different gauge 
equivalence classes of unitary multiplier representations. The technique of obtaining 
such a complete set of gauge functions has been developed by LCvy-Leblond (1 969) 
for the Lagrangian gauge problem in classical mechanics. This technique has been 
extended for application in quantum mechanics (Hoogland 1976, 1977). Here we 
only give those details that are necessary for a formulation of the result. 

The fact that G operates transitively upon X means that any given point x o  of X 
can be mapped onto all other points x of X by the operation of group elements h, of 
G, so that hxxo = x .  Let x o  and { h , } , , ~  be chosen fixed for once and all (convention: 
h,=e ) .  Let be the subgroup of G that leaves xo invariant. The elements hx are 
representatives for the left co-sets of r in G. There is a unique decomposition 

Let p be a multiplier of G (Parthasarathy 1969) with the extra property (called 
g = h ( g ) y ( g )  with h k ) =  h,,, and y (g )E  r. 
centralisation ) 

PLg, r > =  1 w g  E G, v y  E r). (9) 

Let p be a one-dimensional unitary representation (character) of r. Then A defined 
by 

A k ,  x ) = c L ( g ,  h x ) l p ( r ( g h x ) )  (10) 

is a gauge function, and p is ‘the’ multiplier of A ,  i.e. A and p obey equation (6 ) .  Any 
equivalence class of multipliers of G that are trivial on r contains a centralised 
representative obeying equation (9), and a collection of such representatives will be 
called a complete set of centralised multipliers of G. 

The characters of r form an Abelian group under pointwise multiplication, and 
those characters of r that can be extended to a character of G form a subgroup. A 
collection of representatives from the co-sets of this subgroup will be called a 
complete set of non-extensible characters of I‘. 

Theorem2. If p moves over a complete set of centralised multipliers of G and if p 
moves over a complete set of non-extensible characters of r then A defined by 
equation (10) moves over a complete set of inequivalent gauge functions. 

The proof of this result (in different formulations) can be found in the literature. In 
particular, equation (10) of this paper corresponds to equation (43) of LCvy-Leblond 
(1969) and equation (34) of Hoogland (1976). 

For the classification of unitary multiplier representations, up to projective as well 
as up to gauge equivalence, we will need the ordinary (non-projective) equivalence 
concept, which we will emphatically call unitary equivalence in the following sections. 
So U and U’ are unitarily equivalent if they are projectively equivalent in such a way 
that equation ( 2 )  holds for v ( g ) =  1. 
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4. Application to a Euclidean group 

Let G be the covering group of the Euclidean transformations in a plane, obtained by 
replacement of the rotation subgroup SO(2) by its covering group. The group ele- 
ments of G will be denoted by g = (a, 4); we do not conqider inversions. The 
operation of G upon the x-y plane and the group product in G are as usual: 

gx = R (4)x + a (1 1) 

g’g = ( a ‘ + R ( 4 ’ ) a ,  4’+4). (12) 

We want to classify the multiplier representations of G, first up to projective 
equivalence (see 4.1) and then up to gauge equivalence (see § 4.2). The assertion 
that gauge equivalence rather than projective equivalence corresponds to 
‘equivalence in every physical aspect’ will be confirmed by the physical interpretation 
(see § 4.3). 

4.1. Classification up to projective equivalence 

The multipliers of G can be given, up to equivalence, in the following form, where the 
label p moves over the real numbers (see section 6d 111, p 37, Bargmann 1954): 

hp(a ’ ,  4‘; a, 4 ) = e x p [ t i p ( a ’ x ~ ( 4 ’ ) ~ ) , ] .  (13) 

U(a ,  4 )  = exp(-ia. P) exp(-i4J) (14) 

[ P x ,  P y  I = -$, [J, P, 1 = iPy, [J, P,] = -iP,. (15) 

C =  P 2 - 2 p J  (16) 

If the unitary multiplier representation U with multiplier pp is parametrised as 

then the commutation relations of the infinitesimal (Hermitian) generators are 

The operator C defined by 

commutes with all generators and, hence, in an irreducible representation C is a (real) 
multiple of the unit operator. The irreducible unitary multiplier representations with 
non-trivial multiplier are labelled (up to unitary equivalence) by p E R  - { O }  and C E R. 

A standard realisation, denoted by Urp,c], operating in the Hilbert space of square 
integrable functions 4 (k )  is given by (14) with 

d 
dk 

P, = ip-, P, = k, 

From (14) and (17) it is easily seen that 

Urp,c,1(a, 4 )  = exp[i4(C’- C)/2PI wB.cl(a, 4) (18) 
which means that Ucp,ct~ and U [ p , ~ ~  are projectively equivalent. This completes the 
classification of the unitary multiplier representations of the present group G, up to 
unitary as well as up to projective equivalence. 

4.2. Classification up to gauge equivalence 

So far we only used well known representation theoretical methods applied to the 
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abstract group structure of G. Here we will also use the concrete structure provided 
by the operation of G upon the plane, and we will apply the results of 99 2 and 3. 

The obvious choice for xo will be the origin 0 in the plane. Then its invariance 
group r is the covering group of the rotations. The co-set representatives h, will be 
chosen simply as the translations from 0 to x. So in this case the set of elements {hr} 
forms a subgroup, viz. the translation subgroup. This is even a normal subgroup and 
the structure of G is that of a semi-direct product of the translation subgroup with r. 
Due to this structure all characters of r can be trivially extended to a character of G. 
Substitution of a = 0 in (13) shows that all multipliers pa are centralised (see equation 

From theorem 2 it  now follows that a complete set of inequivalent gauge functions 
(9)). 

is given by 

A,(a, 4 ; x)  = exp[iiP(a x R ( 4 ) x ) Z l .  (19) 

Substitution of this result in equation ( 5 )  gives the form of the operators U(a ,  4)  in a 
Hilbert space of wavefunctions i,b(x). By differentiation we obtain the infinitesimal 
generators operating in configuration space: 

p = - i d  x -1 2 P Y ,  (20) 
We want to know which of the irreducible unitary multiplier representations U [ p , c ~ ,  
given by (14) and (17), are unitarily equivalent to a representation of the form, given 
by (14) and (20). To this end we look for unitary transformations 4(k)+i,b(x) 
transforming (17) into (20). The most general linear transformation which does the 
trick has the form 

P, = -i ay + ipx J = -i(x ay - ya,). 

where the function F ( k )  is a solution of 

d2 
dk 

( k - P 7 - C) F (k ) = 0. 

If we define the inner product for the wavefunctions as usual then unitarity means 

This results in a square integrability condition on F(k)  
+m J-, ~ ~ I w ) I ~  = IPI. 

The equations (22) and (24) together are well known, e.g. from the eigenvalue 
problem of the harmonic oscillator. Only for a discrete spectrum of eigenvalues 

n = 0, 1,2,  . . . (25) C = (2n + l)lPI, 

equation (22) has square integrable solutions, viz. Hermite functions 

F (k )  = IP 1”4hn(kllP I*”). (26) 
The result so far is the following: only if C belongs to the discrete spectrum ( 2 5 )  then 
U[s,cl is unitarily equivalent to a representation of the form determined by (20), 
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operating on wavefunctions $(x). We will denote these representations by U(s.fl) .  
Their carrier space is the Hilbert space spanned by the functions $(x) given by (21) 
and (26). 

It will be clear that UiB,fl,) and U ( s , n ~  are still projectively equivalent because U L ~ , C , I  
and are so. However and Uis.,,, are not gauge equivalent because a 
gauge transformation between their carrier Hilbert spaces does not exist. This can be 
seen most easily from the equation obtained from (16) by substitution of (20) and 
(25): 

( - ia ,+tpy)Z+(- ia , -4px)2=(2n+l) lpl .  (27) 
Wavefunctions obeying this equation for different values of n are certainly not related 
by a gauge transformation. 

Herewith we have completed the classification, up to gauge equivalence, of the 
unitary multiplier representations (with non-trivial multiplier). A set of represen- 
tatives is given by the with @ E R  - { O }  and n = 0, 1 , 2 ,  . . . . 

4.3. Physical interpretation 

The present group G and its representations are very useful for the description of a 
charged particle in a uniform magnetic field, relativistic as well as non-relativistic. The 
connected invariance group of a uniform magnetic field B is the direct product of the 
Euclidean group in a plane perpendicular to B and of the Galilei (or PoincarC) group 
along a line parallel to B. Moreover, it can be shown that the unitary multiplier 
representations of that invariance group are the tensor products of such represen- 
tations of its factors (Hoogland 1977, 1978). If we disregard the free motion of the 
particle parallel to B then we can restrict ourselves to the Euclidean group and its 
representations. If we write p = e B  and C = 2m8 where m and e are the mass and the 
charge of the particle, then we obtain from (16) 

p 2  e 8 = ----W. 
2m m 

In this relation we recognise a kinetic energy term and a magnetic energy term. 
Apparently the constant 8 is to be identified with the energy of the motion of the 
particle perpendicular to the field. 

The results obtained under § 4.1 then mean that C and, hence, 8 may have all real 
values. Moreover, different values give rise to projectively equivalent representations. 
This would mean that 8 here would play a role similar to that of the internal energy "I' 
in the multiplier representations of the Galilei group (LCvy-Leblond 1974) and of the 
Newton-Hooke group (see the next section). However, we know that this is not true. 
The values of % characterise the discrete Landau levels which are not at all equivalent 
in every physical aspect. A transition between two such levels is not a trivial trans- 
formation of the mathematical description (like changing the zero point of energy) but 
it is a physical process involving emission or absorption of energy. 

Fortunately, by the results obtained under § 4.2 these problems are cleared away. 
Indeed, equation ( 2 5 )  results in a discrete spectrum for the Landau energy 

(29) 

and all different values of 8 give rise to gauge inequivalent representations. 
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Notice that equation (27) results in (the x-y part of) the wave equation in which 
the magnetic field B is involved by minimal coupling to its potential A = 
(-+By, iBx, 0) in the so called symmetric gauge: 

1 - [(-i 8, - e A , ) 2  + (-i 8, - e A , ) * ]  = 8. 
2m 

For more details about the jion between minimal coupling and symmetry we refer to a 
previous paper (Hoogland 1978). 

5. Application to a cosmological group 

Let G be the group of transformations g = (6, a, U )  operating upon the events x = (t, z )  
in a one-(space-)dimensional universe as follows: 

gx = ( t  + b, z + u sin t + a cos t ) .  (31) 

From the operation of g' upon the event gx one easily finds the group product in G: 

g'g = (b '+b,  a 'cos  b + U '  sin b +a,  v'cos b -a 's in  b +U). (32) 

This group (or rather its three-dimensional analogue) has been introduced by Bacry 
and L6vy-Leblond (1968) as a contraction of a de Sitter group (see also Sudbery 
1972). Bacry and LCvy-Leblond have called it  a Newton group, and under this name 
it has been dealt with by LCvy-Leblond (1969) and Hoogland (1976). Derome and 
Dubois (1972) preferred to associate the name of Hooke to this group, and under that 
name it has been considered by Dubois (1973a, b) and by Roman and Haavisto 
(1976). Here we will call this group the Newton-Hooke group. We will classify the 
multiplier representations of this group G analogously to § 4. 

5.1. Classification up to projective equivalence 

The multipliers of G, up to equivalence, can be given in the following form, where the 
label A moves over the real numbers (see formula (17a) of Derome and Dubois 
1972): 

W A ( ~ ' ,  a' ,  U'; b, a, V )  

= exp[iA (;(U"- af2)  cos b sin b + u'a cos b - a'a sin b - u'a' sin2 b)] .  

If the unitary multiplier representation U with multiplier kA is parametrised as 

(33) 

U(b, a, U )  = exp(ibH) exp(- id)  exp(ivN) (34) 

[P, N ]  = -iA, [H, PI = iN, [H, NI = - 9 .  (35) 

C = P 2 +  N2-2AH (36) 

then the commutation relations of the infinitesimal (Hermitian) generators are 

The operator C defined by 

commutes with all generators and, hence, in an irreducible representation C is a (real) 
multiple of the unit operator. The irreducible unitary multiplier representations with 
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non-trivial multiplier are labelled (up to unitary equivalence) by A E R  -{O} and C E R .  
A standard realisation, denoted by u[A,C], operating in the Hilbert space of square 
integrable functions 4 ( p )  is given by (34) with 

From (34) and (37) it is easily seen that 

5.2. Classification up to gauge equivalence 

The obvious choice for xo will be the event (0, 0), i.e. the origin in the t-z plane. From 
(31) it is clear that the invariance group r of xo consists of all group elements of the 
form (0, 0, U). The left co-set representatives h(l,,) transforming the origin (0,O) into 
the event ( t , z )  will be chosen as the group elements of the form ( t ,z ,O).  The 
decomposition g = h ( g ) y ( g )  now reads (b,  a ,  U)= (b ,  a,  O)(O, 0 ,  U). In the present case 
the set of elements {h(f .L)} does not form a subgroup, so it is hardly useful to call them 
‘translations’. The characters of r, given by p a ( v ) =  exp(iau) with a E R, cannot be 
extended to characters of G, except the trivial one for which a = 0. Substitution of 
b = a = 0 in (33) shows that all multipliers p A  are centralised. 

From theorem 2 it now follows that a complete set of inequivalent gauge functions 
is given by 

A A , ~  (6, a, U ; t, 2) 

= exp{iA [;(U’ - a’) cos t sin t + vz  cos t - az sin t - vu sin’ t ]  

- ia (v  cos t - a  sin t ) } .  (39) 

Substitution of this result in equation (5) gives the form of the operators U(b,  a ,  U )  in a 
Hilbert space of wavefunctions $(t ,  z ) .  By differentiation we obtain the infinitesimal 
generators operating in configuration space: 

H=ia, 

P = -i(cos t)a, + (Az - a )  sin t 

N = i(sin ()a, + (Az - a )  cos t. 

The most general linear transformation 4 ( p ) +  $(t ,  2)  transforming the generator H 
in (37) into H in (40) has the form 

where the function F ( p ,  z )  has to be determined from the condition that also the 
generators P and N in (37) transform into P and N in (40). It is a matter of 
straightforward calculation to find that this condition gives the following equations: 

(i a, + p ) F ( p ,  z ) =  0 ,  ( i a , + z - a / A ) F ( p , z ) = O .  (42)  
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A solution of these equatiom is 

F(p ,  z ) =  exp[ip(z -a /A)] .  (43) 
This solution is unique up to a complex constant factor which by unitarify of the 
transformation (41) has modulus one. By gauge equivalence it is allowed to change 
the phase of that factor, so we may, indeed, choose it equal to one. 

The result so far is the following: each multiplier representation UrA,c] is unitarily 
equivalent to a set (labelled by a) of representations of the form determined by (40), 
operating on wavefunctions ~ ( t ,  z ) .  We will denote these representations by U{,,,,,C). 
Their carrier space is the Hilbert space spanned by the functions 4(t, z )  given by (41) 
and (43). 

It will be clear that U{A,a,Cj and U{A,a',c) are gauge inequivalent, as they have 
inequivalent gauge functions AA,, and AA,,,. On the other hand, U { h , a , ~ )  and U { A , a . ~ ' ~  
are gauge equivalent; calculation shows that 

U{A.n ,C ' )  (6, a, v ) =  exp[-ib(C'- W 2 . A  ] T ~ { A , a , c )  (6, a, v ) ~ - '  (44) 

where T is the gauge transformation from the carrier space of U { A , a , ~ )  onto that of 
U{A,n,C,) working on the wavefunctions as follows 

(TJl)(t, z )  = exp[it(C'- C)/2A]Jl(f, z ) .  (45) 
By substitution of (40) in (36) we obtain a differential equation for the functions 
*(t, z ): 

2 1 2 1  2 a -c 
i a, =-(-i a,) +-Az -az +- 

2A 2 2A ' 

It is easily checked that the gauge transformation T transforms the wavefunctions Jl 
obeying equation (46) into wavefunctions 4' = T$ obeying an equation analogous to 
(46) where C is replaced by C'. Due to the gauge equivalence of U { h , n , ~ )  and UfA, , ,~ , )  
we may choose C arbitrary for a representative from each gauge equivalence class. 
We will choose C = a2 .  

Herewith we have completed the classification, up to gauge equivalence, of the 
unitary multiplier representations with non-trivial multiplier. A set of representatives 
is given by the U { A , a , ~ )  with A E iw -IO}, a E R  and C = c y 2 .  

5.3. Physical interpretation 

The Newton-Hooke group G may be interpreted as the kinematical symmetry group 
of a non-relativistic oscillating universe (Bacry and Levy-Leblond 1968) or as the 
dynamical symmetry group of a harmonic oscillator (Sudbery 1972). Indeed, if we put 
A = m and C = -2mV then the relation (36) can be written in the form 

This is easily recognised as the Hamiltonian of a linear harmonic oscillator with mass 
m and w = 1 ,  where P is the momentum operator, N / m  is the position operator 
(Derome and Dubois 1972, 3 12) and V is an additional internal energy. The 
interpretation of these quantities is completely analogous to that in the case of the 
Galilei group (Levy-Leblond 1974). Apparently a 'free' particle in the oscillating 
Newton-Hooke universe behaves like a particle 'attached to a spring' in the Galilean 
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universe (Lkvy-Leblond 1969). The result obtained in § 5.1, viz. that we may choose 
the constant C and, hence, the internal energy 7” arbitrarily in a projective 
equivalence class, is in accordance with our non-relativistic interpretation. 

However, the classification up to gauge equivalence gives more physically relevant 
information. The parameter a, labelling the different gauge equivalence classes that 
are contained within one projective equivalence class, has an obvious physical mean- 
ing. If we put a = f in (46) then we obtain with A = m the equation: 

1 m z 2  
i a, =-(-i a,) +-- f z  . 

2m ‘ 2 ’  

Here we have chosen the internal energy so that the last term in (46) vanishes, as is 
allowed by gauge equivalence. Equation (48) is the Schrodinger equation of a 
harmonic oscillator (with w = 1) on which a constant external force f works, e.g. a 
uniform electric field. For different values of the force f the multiplier representations 
U { h = m , o = f , ~ )  obtained under 0 5.2 are projectively equivalent but not gauge 
equivalent. The latter concept then corresponds to the general idea of ‘equivalence in 
every physical aspect’, as a free particle (f = 0) is in some physical aspect inequivalent 
to a particle in an external field (f # 0), even in an oscillating universe. 

6. Conclusion 

Although one may not notice it at first sight, the examples in the previous two sections 
are isomorphic as abstract groups (exercise: find an explicit form of this isomorphism). 
Their operation upon space(-time), however, is not at all conserved by the iso- 
morphism. In particular, the homogeneous subgroup r in 9 4 will not be mapped by 
that isomorphism onto its analogue r in 0 5, and the centralised multiplier (13) will not 
be mapped onto the centralised multiplier ( 3 3 )  but onto a non-centralised multiplier 
equivalent to ( 3 3 ) .  For that reason we did not exploit that group isomorphism. 

Nevertheless, the very existence of that isomorphism will help to make our point 
clear. It shows that one cannot expect to obtain physically satisfactory results from 
representation theory by the use of the abstract group structure only, because then 
one obtains ‘isomorphic’ results for isomorphic groups (compare §§ 4.1 and 5.1). As 
isomorphic groups may be completely different in their operation upon space(-time), 
one has to use in some way the extra concrete structure provided by that operation. 
We have done so by choosing concrete forms for the Hilbert spaces 2 and the 
representations U that we considered (see equation ( 3 ) ) ,  and also for the equivalence 
transformations T that we allowed (see equation (4)). These forms are the natural 
ones within the framework of quantum mechanics, where the wavefunction $ ( x )  is 
interpreted as a probability amplitude density. As a result, gauge equivalence is the 
natural equivalence concept from a quantum mechanical point of view. 

The examples in the previous two sections show that the classification up to gauge 
equivalence of the unitary multiplier representations corresponds well to the (admit- 
tedly intuitive) notion of ‘equivalence in every physical aspect’, whereas on the other 
hand the classification up to projective equivalence gives rise to an unsatisfactory or 
an incomplete physical interpretation. 

The notion of ‘local equivalence’ introduced in a previous paper (Hoogland 1976) 
coincides with gauge equivalence for the Newton-Hooke group in 0 5, and with 
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projective equivalence for the Euclidean group in li 4. This is related to the fact that 
for the Newton-Hooke group superequivalence of exponents is a non-trivial concept, 
whereas it is trivial for the Euclidean group. So ‘local equivalence’ is intermediate 
between projective and gauge equivalence and only the latter concept gives satis- 
factory results for both examples. This justifies the introduction of the new gauge 
equivalence relation. 

This paper can be generalised in two respects. First, one may consider represen- 
tations consisting not only of unitary but also of anti-unitary operators; secondly, the 
representations may operate on wavefunctions having more than one component 
(Hoogland 1977). The present simplified account, however, is sufficient in order to 
show that the notion of gauge equivalence is relevant in quantum mechanics. 
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